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SPECTRAL PROBLEMS ARISING IN THE STABILIZATION
PROBLEM FOR THE LOADED HEAT EQUATION:

A TWO-DIMENSIONAL AND MULTI-POINT CASES

Jenaliyev M.T., Imanberdiyev K.B., Kassymbekova A.S., Sharipov K.S.

Abstract. Spectral properties of a loaded two-dimensional Laplace operator, studied in
this work are the application with the stabilization of solutions of problems for the heat
equation. The stabilization problem (of forming a cylinder) of a solution of boundary value
problem for heat equation with the loaded two-dimensional Laplace operator is considered.
An algorithm is proposed for approximate construction of boundary controls providing the
required stabilization of the solution. The work continues the research of the authors carried
out earlier for the loaded one-dimensional heat equation.

The idea of reducing the stabilization problem for a parabolic equation by means of bound-
ary controls to the solution of an auxiliary boundary value problem in the extended domain
of independent variables belongs to A.V. Fursikov. At the same time, recently, the so-called
loaded differential equations are actively used in problems of mathematical modeling and
control of nonlocal dynamical systems.

Key words: boundary stabilization, heat equation, spectrum, loaded Laplace operator.

AMS Mathematics Subject Classification: 35K05, 39B82, 47A75

DOI: 10.32523/2306-6172-2019-7-1-23-37

1 Introduction

The idea of reducing the stabilization problem for a parabolic equation by means of
boundary controls to an auxiliary boundary value problem in the extended domain
of independent variables belongs to A.V. Fursikov. It was proposed in his work [1]
and developed further in the works [2, 3, 4]. At the same time, recently, the so-
called loaded differential equations [5, 6, 7, 8, 9, 10] are actively used in problems of
mathematical modeling and control of nonlocal dynamical systems. We have previously
studied stabilization problems for a loaded one- and two-dimensional heat equations
[11, 12, 13]. In this work, we investigate the spectral properties of the loaded two-
dimensional Laplace operator, which are applied to the solution of the stabilization
problem.

Let Ω = {x, y : −π/2 < x, y < π/2} be a domain with a boundary ∂Ω. In the
cylinder Q = Ω × {t > 0} with lateral surface Σ = ∂Ω × {t > 0} we consider the
boundary value problem for the loaded heat equation

ut −∆u+
M∑
m=1

αm · u(xm, y, t) +
N∑
n=1

βn · u(x, yn, t) = 0, {x, y, t} ∈ Q, (1)
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u(x, y, 0) = u0(x, y), {x, y} ∈ Ω, (2)

u(x, y, t) = p(x, y, t), {x, y, t} ∈ Σ, (3)

where {xm, yn, m = 1, ...,M, n = 1, ..., N} ⊂ (−π/2, π/2) are fixed, {αm, βn, m =
1, ...,M, n = 1, ..., N} ⊂ C are given complex numbers, u0(x, y) ∈ L2(Ω) is given
function.

The aim is to find a function p(x, y, t) such that a solution of the boundary value
problem satisfies the inequality

‖u(x, y, t)‖L2(Ω) ≤ C0e
−σt, σ > 0, t > 0. (4)

Equation (1) is called a loaded equation [5, 6]. We note that problem (1)–(4) with
a single load point was studied in [13].

For problem (1)–(4) in Section 2, an auxiliary stabilization problem is associated
with it by expanding the region of independent variables. To solve this auxiliary prob-
lem (5)–(7) in Section 3 we consider spectral properties of the loaded two-dimensional
Laplace operator. Section 4 contains the main results of the work which were formu-
lated in the form of Lemmas 4.1, 4.2, 4.3 and 4.4, establishing the desired spectral
properties. Sections 5 and 6 give the proofs of Lemmas 4.1 and 4.2, respectively. Sec-
tions 7 and 8 give the proofs of Lemmas 4.3 and 4.4, respectively. On the basis of
these results, an algorithm for solving the stabilization problem (1)–(4) is proposed.
In Section 9, an algorithm for solving problem (1)–(4) is given, where the solution of
problem (1)–(4) is found as a trace of the solution of the auxiliary problem (5)–(7).

2 The auxiliary boundary value problem

We introduce the auxiliary boundary value problem. Let Ω1 = {x, y : −π < x, y < π}
and Q1 = Ω1 × {t > 0}.

zt −∆z +
M∑
m=1

αm · z(xm, y, t) +
N∑
n=1

βn · z(x, yn, t) = 0, {x, y, t} ∈ Q1, (5)

z(x, y, 0) = z0(x, y), {x, y} ∈ Ω1, (6)

∂jz(−π, y, t)
∂xj

=
∂jz(π, y, t)

∂xj
, {y, t} ∈ (−π, π)× {t > 0},

∂jz(x,−π, t)
∂yj

=
∂jz(x, π, t)

∂yj
, {x, t} ∈ (−π, π)× {t > 0}, (7)

j = 0, 1.
The problem is to find an initial function z0(x, y) such that a solution of the BVP

satisfies the inequality

‖z(x, y, t)‖L2(Ω1) ≤ C0e
−σt, σ > 0, t > 0, (8)

where the constants C0 and σ are the same as in the original problem (1)–(4).
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3 Statement of the spectral problems for the loaded
two-dimensional Laplace operator

Let us search for a solution of the problem (5)–(7) in the form

z(x, y, t) =
∑
k,l∈Z

Zkl(t)ψkl(x, y), Zkl(t) = (z(x, y, t), ϕkl(x, y)) , (9)

where (·, ·) denotes a scalar product, and {ϕkl(x, y), k, l ∈ Z}, {ψkl(x, y), k, l ∈ Z} are
a biorthogonal bases of the space L2((−π, π)2) and Z = {0,±1,±2, ...}. The follow-
ing two spectral problems are considered for construction of the biorthogonal bases
{ϕkl(x, y), k, l ∈ Z}, {ψkl(x, y), k, l ∈ Z} in the domain Q = {x, y : −π < x < π,−π <
y < π}: 

−∆ϕ(x, y) +
M∑
m=1

αmϕ(xm, y) = λϕ(x, y),

∂jϕ(−π, y)

∂xj
=
∂jϕ(π, y)

∂xj
,
∂jϕ(x,−π)

∂yj
=
∂jϕ(x, π)

∂yj
,

(10)


−∆ϕ(x, y) +

M∑
m=1

αmϕ(xm, y) +
N∑
n=1

βnϕ(x, yn) = λϕ(x, y),

∂jϕ(−π, y)

∂xj
=
∂jϕ(π, y)

∂xj
,
∂jϕ(x,−π)

∂yj
=
∂jϕ(x, π)

∂yj
,

(11)

where j = 0, 1, ∆ is the Laplace operator, {αm, βn, m = 1, ...,M, n = 1, ..., N} ⊂ C
are given complex numbers, λ ∈ C is a spectral parameter.

4 Main results

Let Z = {0,±1,±2, ...}, ᾱ =
M∑
m=1

αm, β̄ =
N∑
n=1

βn, x̄ =
M∑
m=1

xm, ȳ =
N∑
n=1

yn. The following

propositions are valid.
Lemma 4.1. (a). Let ∀ l ∈ Z : ᾱ 6= l2. Then a system of eigenfunctions and eigen-
values of the problem (10) is defined in the form:ϕkl(x, y) =

eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ

 eiky, λkl = l2 + k2, l ∈ Z′ ≡ Z\{0};

ϕk0(x, y) = eiky, λk0 = ᾱ + k2 (l = 0), k ∈ Z

}
. (12)

(b). Let ∃ l0 ∈ Z : ᾱ = l20. Then a system of eigenfunctions, associated functions
(marked with ∼) and eigenvalues of the problem (10) is defined in the form:

{
ϕkl(x, y) =

(
eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ

)
eiky, λkl = l2 + k2, l ∈ Z′1 ≡ Z′\{±l0};
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ϕkl0(x, y) = eiky, ϕ̃±kl0(x, y) = e±il0(x−x̄)+iky, λkl0 = ᾱ + k2
(
ᾱ = l20

)
, k ∈ Z

}
. (13)

Lemma 4.2. (a). Let ∀ l ∈ Z : ᾱ 6= l2. Then a biorthogonal sequence for the basis
(12) is

{ψkl(x, y), k, l ∈ Z} =

=

{
ei(lx+ky), − 1

2π

∑
r∈Z

M∑
m=1

αm · ei(r(x+xm)+ky)

r2 − ᾱ
, l ∈ Z′, k ∈ Z

}
, (14)

which defines a biorthogonal basis in L2((−π, π)× (−π, π)).
(b). Let ∃ l0 ∈ Z : ᾱ = l20. Then a biorthogonal sequence for the basis (13) is

{ψkl(x), k, l ∈ Z} =

=

ei(lx+ky), − 1

2π

∑
r∈Z\{±l0}

M∑
m=1

αm · ei(r(x+xm)+ky)

r2 − ᾱ
, k ∈ Z, l ∈ Z′

 . (15)

which defines a biorthogonal basis in L2((−π, π)× (−π, π)).

Lemma 4.3. (a). Let ∀ k, l ∈ Z : β̄ 6= k2, ᾱ 6= l2. Then a system of eigenfunctions
and eigenvalues for the problem (11) is defined in the form:

{
ϕkl(x, y) =

(
eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ

)(
eiky +

N∑
n=1

βn · eikyn

k2 − β̄

)
,

λkl = k2 + l2, k, l ∈ Z′; eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ
, λ0l = β̄ + l2, l ∈ Z′;

eiky +

N∑
n=1

βn · eikyn

k2 − β̄
, λk0 = k2 + ᾱ, k ∈ Z′; 1, λ00 = ᾱ + β̄

}
. (16)

(b). Let ∀ k ∈ Z : β̄ 6= k2 and ∃ l0 ∈ Z : ᾱ = l20. Then a system of eigenfunctions,
associated functions (marked with ∼) and eigenvalues for the problem (11) is defined
in the form (where Z′1 = Z′\{±l0}):

{
ϕkl(x, y) =

(
eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ

)(
eiky +

N∑
n=1

βn · eikyn

k2 − β̄

)
,

λkl = k2 + l2, k ∈ Z′, l ∈ Z′1; ϕkl0(x, y) = eiky +

N∑
n=1

βn · eikyn

k2 − β̄
,
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ϕ̃±kl0(x, y) = e±il0(x−x̄)

(
eiky +

N∑
n=1

βn · eikyn

k2 − β̄

)
, λkl0 = k2 + ᾱ, ᾱ = l20, k ∈ Z′;

ϕ0l0(x, y) = 1, ϕ̃±0l0(x, y) = e±il0(x−x̄), λ0l0 = ᾱ + β̄

}
. (17)

(c). Let ∀ l ∈ Z : ᾱ 6= l2 and ∃ k0 ∈ Z : β̄ = k2
0. Then a system of eigenfunctions,

associated (marked with ∼) functions and eigenvalues for the problem (11) is defined
in the form (where Z′2 = Z′\{±k0}):

{
ϕkl(x, y) =

(
eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ

)(
eiky +

N∑
n=1

βn · eikyn

k2 − β̄

)
,

λkl = k2 + l2, k ∈ Z′2, l ∈ Z′; ϕk0l(x, y) = eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ
,

ϕ̃±k0l(x, y) = e±ik0(y−ȳ)

(
eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ

)
, λk0l = β̄ + l2, β̄ = k2

0, l ∈ Z′;

ϕk00(x, y) = 1, ϕ̃k00(x, y) = e±ik0(y−ȳ), λk00 = ᾱ + β̄

}
. (18)

(d). Let ∃ k0, l0 ∈ Z : β̄ = k2
0, ᾱ = l20. Then a system of eigenfunctions, associated

functions (marked with ∼) and eigenvalues for the problem (11) is defined in the form:

{
ϕkl(x, y) =

(
eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ

)(
eiky +

N∑
n=1

βn · eikyn

k2 − β̄

)
,

λkl = k2 + l2, k ∈ Z′2, l ∈ Z′1; ϕk0l(x, y) = eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ
,

ϕ̃±k0l(x, y) = e±ik0(y−ȳ)

(
eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ

)
, λk0l = β̄ + l2, β̄ = k2

0, l ∈ Z′1;

ϕkl0(x, y) = eiky +

N∑
n=1

βn · eikyn

k2 − β̄
, ᾱ + k2, k ∈ Z′2;

ϕk0l0(x, y) = 1, ϕ̃k0l0(x, y) = e±ik0(y−ȳ), λk0l0 = ᾱ + β̄;
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ϕ̃kl0(x, y) = e±il0(x−x̄)

(
eiky +

N∑
n=1

βn · eikyn

k2 − β̄

)
, ᾱ + k2, k ∈ Z′2;

ϕ̃k0l0(x, y) = e±il0(x−x̄), ϕ̃k0l0(x, y) = e±il0(x−x̄)±ik0(y−ȳ), λk0l0 = ᾱ + β̄

}
. (19)

Lemma 4.4. (a). Let ∀ k, l ∈ Z : β̄ 6= k2, ᾱ 6= l2. Then a biorthogonal sequence for
the basis (16) is

{ψkl(x, y), k, l ∈ Z} =

ei(lx+ky), − 1

2π

∑
r∈Z

N∑
n=1

βn · ei(r(y+yn)+l(x+x̄))

r2 − β̄
,

− 1

2π

∑
r∈Z

M∑
m=1

αm · ei(r(x+xm)+k(y+ȳ))

r2 − ᾱ
, k, l ∈ Z′,

1

4π2

∑
s,r∈Z

M∑
m=1

N∑
n=1

αmβn · ei(r(x+xm)+s(y+yn))

(r2 − ᾱ)
(
s2 − β̄

)
 , (20)

which defines a biorthogonal basis in L2((−π, π)× (−π, π)).
(b). Let ∀ k ∈ Z : β̄ 6= k2 and ∃ l0 ∈ Z : ᾱ = l20. Then a biorthogonal sequence for

the basis (17) is

{ψkl(x), k, l ∈ Z} =

ei(lx+ky), − 1

2π

∑
r∈Z

N∑
n=1

βn · ei(r(y+yn)+l(x+x̄))

r2 − β̄
,

− 1

2π

∑
r∈Z\{±l0}

M∑
m=1

αm · ei(r(x+xm)+k(y+ȳ))

r2 − ᾱ
, k, l ∈ Z′,

1

4π2

∑
r∈Z, s∈Z\{±l0}

M∑
m=1

N∑
n=1

αmβn · ei(s(x+xm)+r(y+yn))

(s2 − ᾱ)
(
r2 − β̄

)
 , (21)

which defines a biorthogonal basis in L2((−π, π)× (−π, π)).
(c). Let ∀ l ∈ Z : ᾱ 6= l2 and ∃ k0 ∈ Z : β̄ = k2

0. Then a biorthogonal sequence for
the basis (18) is

{ψkl(x), k, l ∈ Z} =

ei(lx+ky),− 1

2π

∑
r∈Z\{±k0}

N∑
n=1

βn · ei(r(y+yn)+l(x+x̄))

r2 − β̄
,
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− 1

2π

∑
r∈Z

M∑
m=1

αm · ei(r(x+xm)+k(y+ȳ))

r2 − ᾱ
, k, l ∈ Z′,

1

4π2

∑
r∈Z\{±k0}, s∈Z

M∑
m=1

N∑
n=1

αmβn · ei(s(x+xm)+r(y+yn))

(s2 − ᾱ)
(
r2 − β̄

)
 , (22)

which defines a biorthogonal basis in L2((−π, π)× (−π, π)).
(d). Let ∃ k0, l0 ∈ Z : β̄ = k2

0, ᾱ = l20. Then a biorthogonal sequence for the basis
(19) is

{ψkl(x), k, l ∈ Z} =

ei(lx+ky),− 1

2π

∑
r∈Z\{±k0}

N∑
n=1

βn · ei(r(y+yn)+l(x+x̄))

r2 − β̄
,

− 1

2π

∑
r∈Z\{±l0}

M∑
m=1

αm · ei(r(x+xm)+k(y+ȳ))

r2 − ᾱ
, k, l ∈ Z′,

1

4π2

∑
r∈Z\{±k0}, s∈Z\{±l0}

M∑
m=1

N∑
n=1

αmβn · ei(s(x+xm)+r(y+yn))

(s2 − ᾱ)
(
r2 − β̄

)
 , (23)

which defines a biorthogonal basis in L2((−π, π)× (−π, π)).

A one-dimensional analogue of the problems (10) and (11) is studied in [13].

5 Proof of Lemma 4.1

Using the method of separation of variables

ϕkl(x, y) = Xl(x)Yk(y), k, l ∈ Z, (24)

−X ′′

l (x) +
M∑
m=1

αmXl(xm)

Xl(x)
+
−Y ′′

k (y)

Yk(y)
= λkl ≡ λ

(1)
l + λ

(2)
k , k, l ∈ Z, (25)

and for the solution of (10) we obtain the following spectral problems −X
′′

l (x) +
M∑
m=1

αmXl(xm) = λ
(1)
l Xl(x),

X
(j)
l (−π) = X

(j)
l (π), j = 0, 1, l ∈ Z,

(26)

{
−Y ′′

k (y) = λ
(2)
k Yk(y),

Y
(j)
k (−π) = Y

(j)
k (π), j = 0, 1, k ∈ Z.

(27)
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As we know, the solution of problem (27) has the form:{
Yk(y) = ei k y, λ

(2)
k = k2, k ∈ Z

}
. (28)

For the problem (26) it is necessary to consider the following two cases: (a) @ l ∈
Z : ᾱ = l2; (b) ∃ l0 ∈ Z : ᾱ = l20.

(a) Let @ l ∈ Z : ᾱ = l2.We note that the general solution of the loaded differential
equation (26) is represented as a linear combination of the following complete system
of periodic functions: {

Φl(x) = ei l x, l ∈ Z
}
,

as:
Xl(x) = Ale

i l x + Cl, l ∈ Z, (29)

where the undetermined coefficients Al, Cl are to be determined from the loaded dif-
ferential equation (26). We have:

Cl = Al

M∑
m=1

αm · eilxm

l2 − ᾱ
, l ∈ Z′, C0 = A0.

Carrying out the normalization of these coefficients, from this and from (29) we finally
obtain the solution of the spectral problem (26):

{
Xl(x) = ei l x +

M∑
m=1

αm · eilxm

l2 − ᾱ
, λ

(1)
l = l2, l ∈ Z′; X0(x) = 1, λ

(1)
0 = ᾱ

}
. (30)

Relations (24), (28) and (30) imply statement (a) (12) of Lemma 4.1.
(b) Let ∃ l0 ∈ Z : ᾱ = l20. By analogy with the previous case (a), we have:

Cl = Al

M∑
m=1

αm · eilxm

l2 − ᾱ
, l ∈ Z′1 ≡ Z′ \ {±l0}, C0 = A0.

Carrying out the normalization of these coefficients, from this and from (29) we finally
obtain the system of eigenfunctions and eigenvalues for the spectral problem (26):

{
Xl(x) = ei l x +

M∑
m=1

αm · eilxm

l2 − ᾱ
, λ

(1)
l = l2, l ∈ Z′1;

X±l0(x) = 1, λ
(1)
±l0 = ᾱ = (±l0)2

}
. (31)
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Let us find the associated function for the eigenfunction X±l0(x) = 1, corresponding
to the eigenvalue λ(1)

±l0 = ᾱ = (±l0)2. We have: −X̃
′′

l0
(x) +

M∑
m=1

αmX̃l0(xm)− (l0)2X̃l0(x) = (l0)2,

X̃
(j)
l0

(−π) = X̃
(j)
l0

(π), j = 0, 1.

(32)

Hence for the eigenvalue
M∑
m=1

αm = (±l0)2 we find the desired associated function:

X̃±l0(x) = e±il0(x−x̄). (33)

Thus, for the spectral problem (26) the system of eigenfunctions and associated
functions and eigenvalues takes the form:

{
Xl(x) = ei l x +

M∑
m=1

αm · eilxm

l2 − ᾱ
, λ

(1)
l = l2, l ∈ Z′1; X±l0(x) = 1,

X̃±l0(x) = e±il0(x−x̄), λ
(1)
±l0 = ᾱ = (±l0)2

}
. (34)

Relations (24), (28) and (34) imply statement (b) (13) of Lemma 4.1. Thus,
Lemma 4.1 is completely proved.

6 Proof of Lemma 4.2

Let us find a biorthogonal sequence for (12) (case (a)). We search for it in the form:

{ψkl(x, y), k, l ∈ Z} =
{
ei(lx+ky), f0(x) eiky, l ∈ Z′, k ∈ Z

}
, (35)

where only a function f0(x) is unknown. Using the basis (12), we search for the
unknown function f0(x) in the form:

f0(x) = C0 +
∑
r∈Z′

Cr

eirx +

M∑
m=1

αm · eikxm

r2 − ᾱ

 ,

where {Cr, r ∈ Z′} are unknown coefficients, which must be determined by biorthog-
onality conditions:

(1, f0(x)) = 1;

eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ
, f0(x)

 = 0, l ∈ Z′.
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The last conditions imply that

C0 =
1

2π
−
∑
r∈Z′

Cr ·

M∑
m=1

αm · eirxm

r2 − ᾱ
, Cl = − 1

2π
·

M∑
m=1

αm · eilxm

l2 − ᾱ
, l ∈ Z′.

Using values Cl, we rewrite C0:

C0 =
1

2π

1 +
∑
r∈Z′


M∑
m=1

αm · eirxm

r2 − ᾱ


2 .

Further using values C0, we represent the desired function f0(x):

f0(x) = − 1

2π
·
∑
r∈Z

M∑
m=1

αm · eir(x+xm)

r2 − ᾱ
. (36)

Relations (35) and (36) imply statement (a) (14).
The biorthogonal sequence for (13) (case (b)) is

{ψkl(x, y), k, l ∈ Z} =
{
ei(lx+ky), f0(x) eiky, k ∈ Z, l ∈ Z′

}
, (37)

where we have to find the unknown function f0(x). We search for this function in the
form:

f0(x) = C0 +
∑

r∈Z′\{±l0}

Cr

eirx +

M∑
m=1

αm · eirxm

r2 − ᾱ

+ Cl0e
il0(x−x̄) + C−l0e

−il0(x−x̄),

then biorthodonality conditions imply that

(1, f0(x)) = 1;

eilx +

M∑
m=1

αm · eirxm

l2 − ᾱ
, f0(x)

 = 0, l ∈ Z′\{±l0};

(
e±il0(x−x̄), f0(x)

)
= 0.

First, the conditions
(
e±il0(x−x̄), f0(x)

)
= 0 imply that C±l0 = 0,

C0 =
1

2π
−

∑
r∈Z′\{±l0}

Cr ·

M∑
m=1

αm · eirxm

r2 − ᾱ
.
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Further, for l ∈ Z′\{±l0} we find Cl and C0:

Cl = − 1

2π
·

M∑
m=1

αm · eilxm

l2 − ᾱ
,

C0 =
1

2π
·

1 +
∑

r∈Z′\{±l0}


M∑
m=1

αm · eirxm

r2 − ᾱ


2 .

Furthermore, using the values C0, we represent the desired function f0(x) :

f0(x) = − 1

2π

∑
r∈Z\{±l0}

M∑
m=1

αm · eir(x+xm)

r2 − ᾱ
. (38)

Relations (37) and (38) imply statement (b) (15). We apply the Paley-Wiener theorem
([14], p.206–207). Thus, Lemma 4.2 is completely proved.

7 Proof of Lemma 4.3

Using the method of separation of variables, and the relationship

−X ′′

l (x) +
M∑
m=1

αmXl(xm)

Xl(x)
+

−Y ′′

k (y) +
N∑
n=1

βnYk(yn)

Yk(y)
=

= λkl ≡ λ
(1)
l + λ

(2)
k , k, l ∈ Z, (39)

for the solution (11) we obtain the following spectral problems −Y ′′

k (y) +
N∑
n=1

βnYk(yn) = λ
(2)
k Yk(y), k ∈ Z,

Y
(j)
k (−π) = Y

(j)
k (π), j = 0, 1,

(40)

 −X ′′

l (x) +
M∑
m=1

αmXl(xm) = λ
(1)
l Xl(x), l ∈ Z,

X
(j)
l (−π) = X

(j)
l (π), j = 0, 1,

(41)

For problems (40) and (41) we need to consider the following four cases:
(a) @ k, l ∈ Z : ᾱ = l2, β̄ = k2,
(b) @ k ∈ Z : β̄ = k2, ∃ l0 ∈ Z : ᾱ = l20,
(c) @ l ∈ Z : ᾱ = l2, ∃ k0 ∈ Z : β̄ = k2

0,
(d) ∃ k0, l0 ∈ Z : ᾱ = l20, β̄ = k2

0.
Since problems (40) and (41) coincide with problem (26), all four cases of Lemma 4.3

are proved in the same way as case (b) of Lemma 4.1.
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(a). The case when @ k, l ∈ Z : ᾱ = l2, β̄ = k2. By analogy with case (b)
of Lemma 4.1, we obtain the system of eigenfunctions and eigenvalues for spectral
problems (40) and (41) respectively in the form

{Yk(y), λ
(2)
k ; k ∈ Z} =

{
eiky +

N∑
n=1

βn · eikyn

k2 − β̄
, λ

(2)
k = k2, k ∈ Z′; 1, λ

(2)
0 = β̄

}
, (42)

{Xl(x), λ
(1)
l ; l ∈ Z} =

{
eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ
, λ

(1)
l = l2, l ∈ Z′; 1, λ

(1)
0 = ᾱ

}
. (43)

Relations (24), (42) and (43) imply statement (a) (16) of Lemma 4.3.
(b). The case when @ k ∈ Z : β̄ = k2, ∃ l0 ∈ Z : ᾱ = l20. By analogy with case (b)

of the Lemma 4.1, we obtain a system of eigenfunctions and associated functions and
eigenvalues for the spectral problem (41) in the form

{Xl(x), λ
(1)
l ; l ∈ Z} =

{
eilx +

M∑
m=1

αm · eilxm

l2 − ᾱ
, λ

(1)
l = l2, l ∈ Z′1;

1, λ
(1)
0 = ᾱ, e±il0(x−x̄), λ

(1)
l0

= ᾱ

}
(44)

where the associated functions are the following

{X̃±l0 (x), λ
(1)
l0

; l ∈ Z} =
{
e±il0(x−x̄), λ

(1)
±l0 = ᾱ = (±l0)2

}
.

Relations (24), (42) and (44) imply statement (b) (17) of Lemma 4.3.
(c). The case when @ l ∈ Z : ᾱ = l2, ∃ k0 ∈ Z : β̄ = k2

0. By analogy with case (b)
of the Lemma 4.1, we obtain a system of eigenfunctions and associated functions and
eigenvalues for the spectral problem (40) in the form

{Yk(y), λ
(2)
k ; k ∈ Z} =

{
eiky +

N∑
n=1

βn · eikyn

k2 − β̄
, λ

(2)
k = k2, k ∈ Z′2;

1, λ
(2)
0 = β̄, e±ik0(y−ȳ), λ

(2)
k0

= β̄

}
. (45)

where associated functions are the following

{Ỹ ±k0 (y), λ
(2)
k0

; k ∈ Z} =
{
e±ik0(y−ȳ), λ

(2)
±k0 = β̄ = (±k0)2

}
.

Relation (24), (43) and (45) imply statement (c) (18) of Lemma 4.3.
(d). The case when ∃ k0, l0 ∈ Z : ᾱ = l20, β̄ = k2

0. In this case, we obtain a system
of eigenfunctions and associated functions and eigenvalues for the spectral problems
(40) and (41) in the form (44) and (45).

Relation (24), (44) and (45) imply statement (d) (19) of Lemma 4.3. Thus, Lemma 4.3
is completely proved.
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8 Proof of Lemma 4.4

Let us find a biorthogonal sequence for (16) (case (a)). We search for it in the form:

{ψkl(x, y), k, l ∈ Z} =

{
ei(lx+ky), g0(y)eilx, f0(x)eiky, k, l ∈ Z′, f0(x)g0(y)

}
, (46)

where only functions f0(x), g0(y) are unknown. Using the basis (16) by biorthogonality
conditions we find the unknown functions f0(x), g0(y) :

f0(x) = − 1

2π

∑
r∈Z

M∑
m=1

αm · eir(x+xm)

r2 − ᾱ
, g0(y) = − 1

2π

∑
r∈Z

N∑
n=1

βn · eir(y+yn)

r2 − β̄
. (47)

Relations (46) and (47) imply statement (a) (20).
Let us find a biorthogonal sequence for (17) (case (b)). We search for it in the form

{ψkl(x, y), k, l ∈ Z} =
{
ei(lx+ky), g0(y)eilx, f0(x)eiky, k, l ∈ Z′, f0(x)g0(y)

}
, (48)

where we have to find the unknown functions f0(x), g0(y). By appling biorthogonality
conditions we have

f0(x) = − 1

2π

∑
r∈Z\{±l0}

M∑
m=1

αm · eir(x+xm)

r2 − ᾱ
, g0(y) = − 1

2π

∑
r∈Z

N∑
n=1

βn · eir(y+yn)

r2 − β̄n
. (49)

Relations (48) and (49) imply statement (b) (21).
Construction of biorthogonal basis for (18) (case (c)) is similar to case (b):
We consider a construction of biorthogonal basis for (19) (case (d)). Let us search

it in the form:

{ψkl(x, y), k, l ∈ Z} =
{
ei(lx+ky), g0(y)eilx, f0(x)eiky, k, l ∈ Z′, f0(x)g0(y)

}
, (50)

where it is required to find the unknown functions f0(x), g0(y). By the orthogonality
conditions we have:

f0(x) = − 1

2π

∑
r∈Z\{±l0}

M∑
m=1

αm · eir(x+xm)

r2 − ᾱ
, g0(y) = − 1

2π

∑
r∈Z\{±k0}

N∑
n=1

βn · eir(y+yn)

r2 − β̄
.

(51)
Relations (50) and (51) imply statement (d) (23). We apply the Paley-Wiener theorem
([14], p.206–207). Thus, Lemma 4.4 is completely proved.

9 Algorithm for solving stabilization problem

We propose the following algorithm for solving the stabilization problem for the heat
equation with a loaded two-dimensional Laplace operator. It consists of the following
constructively implemented steps.
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Step 1. We define the function z0(x, y) as a continuation of the given function
u0(x, y). Thus in the auxiliary boundary value problem (5)–(7) it is needed to continue
the function z0(x, y) on the square Ω1, so that the requirement (8) is satisfied for a
solution z(x, y, t) of the problem (5)–(7). In this case the condition (4) holds as well for
its restriction u(x, y, t) and a required boundary control p(x, y, t), {x, y} ∈ Σ is defined
as a trace of the function z(x, y, t) for {x, y, t} ∈ Σ.

Step 2. We construct complete biorthogonal system of functions on the square Ω1

by solving appropriate spectral problems.
Step 3. Find the coefficients of the decomposition for the desired function z0(x, y)

on the square Ω1 from constructed at the previous step complete biorthogonal system
so that the condition (8) holds.

Step 4. By the found solution z(x, y, t) of the auxiliary boundary value problem
(5)–(7) as restriction of it to the cylinder Q we find a solution u(x, y, t) to the given
boundary value problem (1)–(3), satisfying the required condition (4). A boundary
control p(x, y, t), {x, y} ∈ Σ is found as a trace of the solution z(x, y, t), i.e.

p(x, y, t) = z(x, y, t)|{x,y,t}∈Σ.

10 Conclusion

The results of the work on the spectral properties of a loaded two-dimensional Laplace
operator can be useful in solving stabilization problems for a loaded parabolic equation
with the help of boundary control actions that can be used in problems of mathematical
modeling by controlled loaded differential equations.
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